Smoothing spline ANOVA frailty model for recurrent event data.

نویسندگان

  • Pang Du
  • Yihua Jiang
  • Yuedong Wang
چکیده

Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data

Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Frailty Model with Spline Estimated Nonparametric Hazard Function

Frailty has been introduced as a group-wise random effect to describe the within-group dependence for correlated survival data. In this article, we propose a penalized joint likelihood method for nonparametric estimation of hazard function. With the proposed method, the frailty variance component and the smoothing parameters become the tuning parameters that are selected to minimize a loss func...

متن کامل

Some Problems in Model Selection 1

This dissertation consists of three parts: the first two parts are related to smoothing spline ANOVA models; the third part concerns the Lasso and its related procedures in model selection. In Part I, by adopting the Cox proportional hazard model to quantify the hazard function, we propose a novel nonparametric model selection technique to analyze time to event data, within the framework of smo...

متن کامل

Smoothing Spline ANOVA for Variable Screening

Smoothing Spline ANOVA is a statistical modeling algorithm based on a function decomposition similar to the classical analysis of variance (ANOVA) decomposition and the associated notions of main effect and interaction. It represents a suitable screening technique for detecting important variables (Variable Screening) in a given dataset. We present the mathematical background together with poss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2011